博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
DPDK使用hugepage原理总结
阅读量:4055 次
发布时间:2019-05-25

本文共 7930 字,大约阅读时间需要 26 分钟。

hugepage原理参考

DPDK版本:17.11.2

hugepage的作用: 

1. 就是减少页的切换,页表项减少,产生缺页中断的次数也减少 
2. 降低TLB的miss次数

1.DPDK使用前准备

  1. DPDK应用使用hugepage前,应保证系统已经配置hugepage
    (配置参考)
  2. 将 hugetlbfs 特殊文件系统挂载到根文件系统的某个目录
    mount -t hugetlbfs hugetlbfs /dev/hugepages (挂载默认的hugeage大小)
    mount -t hugetlbfs none /dev/hugepages_2mb -o pagesize=2MB(挂载2M的)
    1G大页和2M大页必须挂载了才能使用。挂载其中一个,DPDK也能正常运行。

本测试时只设置了1G大页,具体信息如下:

挂载目录:cat /proc/mounts

2.DPDK使用hugepage代码分析

DPDK初始化函数rte_eal_init调用eal_hugepage_info_init初始化hugepage信息,

2.1. eal_hugepage_info_init初始化主要工作:

此函数主要收集可用hugepage信息(有多少页,挂载目录)。

  • 进入”/sys/kernel/mm/hugepages“目录
  • 寻找“hugepages-”开头的目录并获取此目录有后面的数字,就是hugepage大小,比如我系统下:
  • 使用struct hugepage_info 结构体保存hugepage页面大小,挂载目录,可用页数。注意:如果对应大小hugepage没有挂载,此类hugepage则不会被DPDK程序使用
    eg:比如我们没有执行mount -t hugetlbfs none /dev/hugepages_2mb -o pagesize=2MB,只挂载了mount -t hugetlbfs hugetlbfs /dev/hugepages,DPDK只会使用1G hugepage。
    DPDK程序执行时打印“EAL: 2048 hugepages of size 2097152 reserved, but no mounted hugetlbfs found for that size”表明2M的没有挂载。
  • 以下结构体就是保存hugepage信息的,这个信息后面初始化存储有用。
  • struct hugepage_info {	uint64_t hugepage_sz;   /**< size of a huge page */	const char *hugedir;    /**< dir where hugetlbfs is mounted */	uint32_t num_pages[RTE_MAX_NUMA_NODES];				/**< number of hugepages of that size on each socket */	int lock_descriptor;    /**< file descriptor for hugepage dir */};

    本实验最后大页信息是:

    hugepage_sz=1048576(1048576*1024)
    hugedir="/dev/hugepages"
    num_pages[0]=4

inteal_hugepage_info_init(void){	const char dirent_start_text[] = "hugepages-";	const size_t dirent_start_len = sizeof(dirent_start_text) - 1;	unsigned i, num_sizes = 0;	DIR *dir;	struct dirent *dirent;	dir = opendir(sys_dir_path);  //sys_dir_path[] = "/sys/kernel/mm/hugepages"	if (dir == NULL) {		RTE_LOG(ERR, EAL,			"Cannot open directory %s to read system hugepage info\n",			sys_dir_path);		return -1;	}     /*遍历/sys/kernel/mm/hugepages目录下以“hugepages-”开头的目录*/	for (dirent = readdir(dir); dirent != NULL; dirent = readdir(dir)) {		struct hugepage_info *hpi;		if (strncmp(dirent->d_name, dirent_start_text,			    dirent_start_len) != 0)			continue;		if (num_sizes >= MAX_HUGEPAGE_SIZES)			break;        /*internal_config为DPDK全局变量*/		hpi = &internal_config.hugepage_info[num_sizes];        /*保存hugepage的大小,最多保存三种大小,一般也只用到了1G,2M*/		hpi->hugepage_sz =			rte_str_to_size(&dirent->d_name[dirent_start_len]);        /*get_hugepage_dir函数会到/proc/mounts里去寻找对应大小hugepage页挂载的目录 */		hpi->hugedir = get_hugepage_dir(hpi->hugepage_sz);		/* first, check if we have a mountpoint */		if (hpi->hugedir == NULL) {			uint32_t num_pages;			num_pages = get_num_hugepages(dirent->d_name);			if (num_pages > 0)				RTE_LOG(NOTICE, EAL,					"%" PRIu32 " hugepages of size "					"%" PRIu64 " reserved, but no mounted "					"hugetlbfs found for that size\n",					num_pages, hpi->hugepage_sz);			continue;		}............}

2.2.rte_eal_hugepage_init初始化主要工作:

上面只是获取了hugepage信息,后面rte_eal_memory_init函数->rte_eal_hugepage_init->map_all_hugepages初始化每页具体虚拟地址,物理地址,大小等信息。

  • 获取全局变量,存储分配内存相关信息
/* get pointer to global configuration */	mcfg = rte_eal_get_configuration()->mem_config;
  • 计算一共有多少页,并分配struct hugepage_file 结构管理所有页(如果设置了1G,2M,16G,nr_hugepages最后等于所有页数的总和,本测试nr_hugepages=4)
/* calculate total number of hugepages available. at this point we haven't	 * yet started sorting them so they all are on socket 0 */	for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {		/* meanwhile, also initialize used_hp hugepage sizes in used_hp */		used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;		nr_hugepages += internal_config.hugepage_info[i].num_pages[0];	}	/*	 * allocate a memory area for hugepage table.	 * this isn't shared memory yet. due to the fact that we need some	 * processing done on these pages, shared memory will be created	 * at a later stage.	 */	tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));	if (tmp_hp == NULL)		goto fail;
  • 第一次调用map_all_hugepages创建内存映射文件。orig参数设置为1,下面解释了设置1或是0的作用
    /* * Mmap all hugepages of hugepage table: it first open a file in * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to * map contiguous physical blocks in contiguous virtual blocks. */static unsignedmap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,		  uint64_t *essential_memory __rte_unused, int orig)
    eal_get_hugefile_path函数根据页的索引生成文件路径/dev/hugepages/rtemap_x(本测试是0,1,2,3),4个文件。然后调用open,mamp进行映射。然后把得到的虚拟地址存在hugepg_tbl[i].orig_va = virtaddr;
/* try to create hugepage file */		fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);		if (fd < 0) {			RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,					strerror(errno));			goto out;		}		/* map the segment, and populate page tables,		 * the kernel fills this segment with zeros */		virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,				MAP_SHARED | MAP_POPULATE, fd, 0);
  • 调用find_physaddrs函数获取每页虚拟地址对应的物理地址
/* * For each hugepage in hugepg_tbl, fill the physaddr value. We find * it by browsing the /proc/self/pagemap special file. */static intfind_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi){	unsigned int i;	phys_addr_t addr;	for (i = 0; i < hpi->num_pages[0]; i++) {		addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);		if (addr == RTE_BAD_PHYS_ADDR)			return -1;		hugepg_tbl[i].physaddr = addr;	}	return 0;}
  • 调用find_numasocket获取每页对应的socket  ID。因为分配页内存时,在NUMA架构中会根据NUMA的内存分配策略决定在哪个NUMA节点分配。
if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){			RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",					(unsigned)(hpi->hugepage_sz / 0x100000));			goto fail;		}
  • 根据每页的物理地址进行排序,排序的是struct hugepage_file *tmp_hp,tmp_hp存储了所有hugepage信息,是在一开始时初始化的。qsort排序的单位是一个struct hugepage_file结构体大小,排序依据是每页的物理地址大小。
qsort(&tmp_hp[hp_offset], hpi->num_pages[0],		      sizeof(struct hugepage_file), cmp_physaddr);static intcmp_physaddr(const void *a, const void *b){#ifndef RTE_ARCH_PPC_64	const struct hugepage_file *p1 = a;	const struct hugepage_file *p2 = b;#else	/* PowerPC needs memory sorted in reverse order from x86 */	const struct hugepage_file *p1 = b;	const struct hugepage_file *p2 = a;#endif	if (p1->physaddr < p2->physaddr)		return -1;	else if (p1->physaddr > p2->physaddr)		return 1;	else		return 0;}
  • 然后再次调用map_all_hugepages进行第二次映射。orig参数设置为0,这次和第一次调用有所区别。主要是是保证最大物理地址和最大虚拟地址都连续对应,此前已经保证物理地址是从小到大排序好了的。最后将新映射的地址保存到:hugepg_tbl[i].final_va = virtaddr;参考map_all_hugepages函数以下代码
else if (vma_len == 0) {			unsigned j, num_pages;			/* reserve a virtual area for next contiguous			 * physical block: count the number of			 * contiguous physical pages. */			for (j = i+1; j < hpi->num_pages[0] ; j++) {#ifdef RTE_ARCH_PPC_64				/* The physical addresses are sorted in				 * descending order on PPC64 */				if (hugepg_tbl[j].physaddr !=				    hugepg_tbl[j-1].physaddr - hugepage_sz)					break;#else				if (hugepg_tbl[j].physaddr !=				    hugepg_tbl[j-1].physaddr + hugepage_sz)					break;#endif			}			num_pages = j - i;			vma_len = num_pages * hugepage_sz;			/* get the biggest virtual memory area up to			 * vma_len. If it fails, vma_addr is NULL, so			 * let the kernel provide the address. */			vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);			if (vma_addr == NULL)				vma_len = hugepage_sz;		}
  • 最后调用unmap_all_hugepages_orig取消第一次映射
/* unmap original mappings */		if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)			goto fail;
  • 然后做一些清理工作,创建共享存储,umap不需要的页,最后将页信息保存到全局变量中
if (new_memseg) {			j += 1;			if (j == RTE_MAX_MEMSEG)				break;			mcfg->memseg[j].iova = hugepage[i].physaddr;			mcfg->memseg[j].addr = hugepage[i].final_va;			mcfg->memseg[j].len = hugepage[i].size;			mcfg->memseg[j].socket_id = hugepage[i].socket_id;			mcfg->memseg[j].hugepage_sz = hugepage[i].size;		}

2.3.其他

rte_eal_hugepage_init只会被RTE_PROC_PRIMARY的进程调用(多进程情况下)。rte_eal_hugepage_init完成后只是将可用的大页内存物理地址,虚拟地址,socket id,大小信息保存到了全局变量中,怎么使用这些内存还需要进一步管理。

转载地址:http://mdqci.baihongyu.com/

你可能感兴趣的文章
学习设计模式(3)——单例模式和类的成员函数中的静态变量的作用域
查看>>
自然计算时间复杂度杂谈
查看>>
当前主要目标和工作
查看>>
使用 Springboot 对 Kettle 进行调度开发
查看>>
一文看清HBase的使用场景
查看>>
解析zookeeper的工作流程
查看>>
搞定Java面试中的数据结构问题
查看>>
慢慢欣赏linux make uImage流程
查看>>
linux内核学习(7)脱胎换骨解压缩的内核
查看>>
以太网基础知识
查看>>
慢慢欣赏linux 内核模块引用
查看>>
kprobe学习
查看>>
慢慢欣赏linux phy驱动初始化2
查看>>
慢慢欣赏linux CPU占用率学习
查看>>
2020年终总结
查看>>
Homebrew指令集
查看>>
React Native(一):搭建开发环境、出Hello World
查看>>
React Native(二):属性、状态
查看>>
JSX使用总结
查看>>
React Native(四):布局(使用Flexbox)
查看>>